Certificate Our team is analyzing your review. If everything is ok, it will be posted soon. We also reserve the rights to remove it from our system if we believe the content violates our policies
  • Home
  • Coursera
  • Approximation Algorithms Part II

Approximation Algorithms Part II

Not specified
Go to Course
Go to Course


Per Course

Course Details

fr, pt, ru, en, es

About this Course

Approximation algorithms, Part 2This is the continuation of Approximation algorithms, Part 1. Here you will learn linear programming duality applied to the design of some approximation algorithms, and semidefinite programming applied to Maxcut.

By taking the two parts of this course, you will be exposed to a range of problems at the foundations of theoretical computer science, and to powerful design and analysis techniques. Upon completion, you will be able to recognize, when faced with a new combinatorial optimization problem, whether it is close to one of a few known basic problems, and will be able to design linear programming relaxations and use randomized rounding to attempt to solve your own problem. The course content and in particular the homework is of a theoretical nature without any programming assignments.

This is the second of a two-part course on Approximation Algorithms.